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ON ESSENTIALLY NONLINEAR DYNAMICS OF ARCHES AND RINGS* 

V.N. PILIPCHUK 

An analytic method of investigating the essentially nonlinear dynamics of thin- 
walled,shallow arches andringsisgiven. The particular featuresof thismethodwere 
illustratedearlierin /l/ on the example of a two-mass model of an arch. Below the 
basic transformations are generalized to embrace continuous systems. 

A shallow arch represents apparently the simplest continuous object capable of snapping- 
through. In spite of this, no analytic methods exists of solving the corresponding Cauchy 
problem even in the case when only two degrees of freedom are taken into account. Below it is 
shown that the recognition of specific feature of the thin-walled constructions makes it pos- 
sible to obtain sufficiently simple and obvious solutions suitable for large, as well as small 
amplitude motions. Such solutions describe, together with the oscillations about a single 
position of equilibrium, also the nonlocal processes of snapping-through of the arches. In 
addition they determine the corresponding conditions of dynamic stability "in the large". 

1. We write the basic equation of motion of a shallow arch (Fig.1) in the form /2/ 

Here w = w(t, y) and w0 = use denotethe coordinates of the deformed and initial central line 
of the arch respectively, p is the mass density, q(t,y) is a function of transverse load, 2 
is the magnitude of the thrust, EZ is the fl exural rigidity and EA, is the tension-compres- 
sion rigidity. Let us introduce the parameter or characterizing the arch height, and the 

following dimensionless quantities for future convenience: 

rv=w(T,q)=+, wO=-w&+~, P=P(T,q)=(;)L--&- 

The equation (1.1) now becomes 

ar(w - w,) 
arp 

-_I[W]-y+P (1.2) 

where the functional f [WI determines the magnitude of the thrust referred to EA.(u,n/l)? We 
shall consider, for definiteness, a doubly hinged arch, and write the system of the boundary 

and initial conditions in the form 

d2 (TV - W,) 

w 
= al (W - II’,) 

rpo dq’ 11=ST 
=O, W(.t,O)=W(T,n)=O 

aw 
dr ,=,=W’(OJl), Wl,=o=W(O7rl) 

(1.3) 

We shall restrict our investigations to the thin-walled systems, for which the following rela- 

tion holds (h is the arch thickness): 

a=-.$+--(+)~<1 

Direct application of the methods of perturbing the parameter h to solutionofthe problem 
- 
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f1.2), (1.3) is not easy, sincethe 
limiting (?I = 0) equation (1.2) re- 
mains essentially nonlinear. (Ad- 
ditional constraints arenotimposed 
on the magnitude of the displace- 
ments in ordertobeableto analyze 
the global dynamic modeswith snap- 
through). Because of this,we shall 
first transform (1.2). 

We describe the motion of the 
arch in terms of a trajectory of 
the representative point in the 

configurational. space 

x,= w(q)Iw(q)EC4[0,R], 
i 

w{o)=w(Jc)=o 

da (W -Ii’,) 

W q=* = 
dJ (IV - We) 

dq” Irlzn = q 
in which the scalar product and Euclidean norm are defined as follows: 

(XY), =--j-s XY dq; X,YEX,; IXl=v-Gm 
0 

The relation 
fIW1 = 0 (1.4) 

defines a certain manifold in the space X,. Thus, taking into account two degrees of free- 
dom (two forms of linear oscillations, see Sect.21 we find that (1.4) assumes a form of an 
ellipse equation (2.2) in the configurational plane, and for N degrees of freedom, a hyper- 
ellipsoid of dimension N - 1. When h = 0, (1.2) implies that the manifold (1.4) represents 
a geometrical site of the equilibrium configurations of a perfectly flexible arch (string). 

Let us parametrize (1.41 by introducing a certain curvilinear orthogonal coordinate 

system S = 11 S,, Sa, . . ., Si. . . 11 (si is the arc length of the i-th coordinate line), which will be 
later defined more sharply, and denote the point lying on the manifold (1.4) by w" = W'(S,q), 
Thus we have f[w"] = 0. We introduce in the space X,a local coordinate system H = 116, 8 IJT 
with the origin at the point w". We direct the coordinate 5 along the normal to (1.41, and 
place the coordinates 6 = 11 e&&.. 11 in the tangent hyperplane Fig.2). The system of the cor- 
responding orthonormal basic vectors has the form (n denotes the unit vector of the normal to 
(1.41, and I" are tangent vectors) 

L=I,(S)=JIn,TII,n=_~I~I_l’ 
awe 

7’. *. 1 /I 

The orthogonality of n and T follows from the relation 

obtained by inegrating (1.3) by parts, which the boundary conditions taken into account. 
We pass to the local coordinate system Husing the relation 

and study thus a certain h-neighborhood of the manifold (1.4). In accordance with the 
statement that the deformati.on of a #in-walled construction under large displacementisbasic- 
ally a flexural deformation , we assume that the trajectories of the system in motion are 
situated in this neighborhood, Such an assumption is based on the energetic estimates /l/ 
and on the fact that the motion in the direction of the normal n is related to the tension- 
compression type deformation, and the motion along the manifold (1.4) is associated with the 
flexure of the central arch line. 

Let the local coordinate system Ii follow in the course of motion the representativepoint, 
and let S = S(cj),t'= fii. We write the equation of the point trajectory in the form 

W(r, q) = w"(S, rl) + hL (S) H (r) (1.5) 

Substituting (1.5) into (1.2) we obtain the following equation for H: 



(1.6) 

where we used the relation 

f[rV + hLIf]= hoOE _1- $<($- 11)Y9 

obtained with the boundary conditions taken into account. 

Projecting the equation (1.6) onto the vector of the normal rz and tangent hyperplane T, 
we obtain 

$$ + oo2: =- (nFo(W”))~--[(nF1(H))~ -k (nFa(fQh,l- A’[+ + H I- +FQ(H))~] (1.7) 

d"O 
dTy =-_(TFo(W'))~--h[(TF1(H))~~ (TF,(H)),i- h'[<T+>/+ (T&(H)),] 

The specific feature of the sysyem (1.7) quasilinear in 5, 0 is the fact that a linear- 
ized system has only one principal frequency o0 different from zero, and the perturbations 

contain arbitrary functions 11 s1 (t"), s, (to),... 11 of "slow time". The system (1.7) can be solved 
in the framework of the quasilinear theory /3/ and functions 11 sr(t"), $(t"),... 11 must be chosen 

so that the quantity 0 = Ij I&, ea,... 11 remains bounded over the time 7. Satisfying the latter 
requirement, we put the right-hand part of the second equation of (1.7) averaged over t,equal 

to zero 

(TF~(VV')),-I- h[<T (FI(H)),),~ <T (Fz W>,:,l f (1.8) 

ii2 [<T+jl(H:r + CT WWA,] = (1 

This yields, in addition to the quasilinear equation (1.71, an essentially nonlinear system 

of equations (1.8) for the variables S (t") = /I sI (t"), sz (to),... I/ representing the coordinates of 

the point W"on the manifold f[N'] = 0. The corresponding initial conditions are givenbythe 

relations (1.3) and (1.5). To solve the equations (1.7), (1.8) in the configurational space 

X, we must select a system of basis functions, and a system of normal modes of linear oscil- 

lations of the arch can serve as such. 

Discretization of the system by means of the modal analysis can also be carried out 

directly in the initial equation (1.2). The relation (1.8) however yields, forasmallnumber 

of the modes, a system of equations which is much simpler than the initial equation. This is 

due to the fact that firstly is has a lower dimension equal to that of the manifold (1.4) and, 

secondly, the processes described by it take place in the slow time to. The additional high 

frequency components of the motion are described by the quasilinear equations (1.7). Such a 

separation of the motions facilitates the solution of the problem also when numerical methods 

are used for the case of a large number of essential modes. 

2. We illustrate the approach described above on the example of a sinusoidal arch 

(W,(V))= - sinq) taking into account the first two modes of oscillation. The radius vector 

of the point lying on the manifold (1.4) is described, in this case, by the expression 

W" (S, q) = Wq (8) sin q + W," (3) sin 2q (2.1) 

Substituting (2.1) into (1.4) we obtain an equation of an ellipse with semiaxes a = 1, b = I/, 
on the configurational plane W, = 2 (sin q>q, W, = 2(W sin 2q),, (Fig.2). The coordinate system 

S in this case has a single component sl= s, and we choose as this component the arc length 

of the ellipse counted from the top WI = --I, W, = 0. We write for convenience the equation 

of the ellipse in the parametric form 
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The value cp = 0 corresponds to the initial undeformed position of the arch, and cp = JC tothe 

overturned arch. We have 

n+--(- coscpsin rj -+ 2 sincpsin 2q) 

T=!!!?t_ ' -(2sincpsinq+coscpsin2tl); L =(In,Tlj 
as - flw, 

Let us apply to the arch at rest, at the instant T = 0 a constantly 

p sin 9. Having solved the quasilinear system (1.7) we use, as in /l/, the 
expansions to obtain in the basic approximation 

~=r(rp)-r(o)l/$&ost*, e1=0 

r(m)= *[cos~(l-~)-1-15sinP~+(~)Z] 

G=,o(,) 

Relation (1.8) yields the following expression for the function 'p (0 : 

~-$(coo~)tf(q,p)=O; f('P,P)=(3coscp+l--p).sincp 

Analyzing now the potential function 

m(rp,p)=Tl(z,p)dr=~sinPlp+(l-p)(l--cosp) 

0 

(2.3) 

acting load P= 
method of two scale 

(2.4) 

(2.5) 

corresponding to (2.5), we find on the segment O.<qQn the value p = 4 for which the func- 

tion has an absolute maximum at the point cp = 0 and the system is unstable "in the large". 

The influence of the dynamic effects on the magnitude of the critical load becomes apparent 

in the next approximation. The corresponding correctiontothe function f(cp,p) has the form 

+sincpcoscp r”(q) + 
[ 

51/2 
?r(cp)+ y-f&$- 1 

and the value of the critical load is equal to p = 4 $24h (in the case of quasistatic load 

we would have p = 4-24h). The function cp(t”) describes, depending on the quantity p and 
initial conditions, the oscillations, either about a single position of equilibrium, or about 
several (snap-through) positions, and is obtained from (2.5) in terms of the quadratures 

where cp is the velocity perturbation of the skew symmetric mode. The relation (2.6) together 
with (l-5), (2-l), (2.3) and (2.4) determine the solution sought. 

3. Let us consider a problem of free oscillation of a thin-walled circular ring when 

the amplitudes are large. The correspondong equations describing the oscillations can be 
obtained within the framework of the theory of shallow shells /4/ from (1.2) by the change of 

variables W = W, - 20: 

g++ +flOl($-I)=0 

h = & - h2, ,C= 
f 

Ft, frwl=<w+$(~)'>,: 

w(q+2x,r)=w(q,7) 
Here the ring radius is assumed to be unity (d2W,/dq2 = 1). the quantity wis counted from the 
undeformed position of the central line in the direction of the outer normal, and the averag- 
ing is carried out over the whole length of the ring 0.G n < 2s. Taking into account two 
oscillation modes, we put 

w" = Woo (s) f 1/?W,” (s) cos kq, f &‘I ~0 

The latter relation defines a parabola on the configurational plane 
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and in this case we must put in (1.7), (1.8) 

00 = I 1 - i?W"/d$ 1, 12 = (0"-1 (1 - aW/Qz) 

Following Sect.2 we now obtain the solution and write it in its final form 

1. 

2. 

3. 

4. 

5. 

Fig.3 

(3.1) 

where the function '[ (t") is expressed by a quadrature given in 

brackets. 

Fig.3 depicts the solution (3.1) in solid lines, and the 
quasilinear solution /5/ in dashed lines. On the ordinate axis 
we have m', = IO" (LU),, (curves 1) and lra = 102 V-2 ~cos4?),, (curves 2). 
A solution obtained numerically using the Kutta-Runge methodwith 

the integration step AT= 0,l coincides for b = 10-3, k = 4 with 
(3.1) in Fig.3. Analysis of the results depicted in Fig.3 shows 

the effectiveness of the method proposed. 
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